Company profile
Continuing to be the foundation supporting everything—society, the environment and people’s lives. This is the mission of TOKYO KEIKI.

Constructing secure and reliable social infrastructure, developing even more efficient industrial systems, maintaining a beautiful natural environment, providing a safe and comfortable living environment... TOKYO KEIKI’s technology development skills respond to requirements at all kinds of places all over the world, to every scenario and every need. The business fields we deliver technology to cover a broad scope, but our focus is just one: to create an ideal society allowing people to live safely and comfortably. This is TOKYO KEIKI’s core promise: “Quality of Life”. Our skills in developing and applying technology have been supporting Japan’s industrial society and technical innovation.

Taking advantage of these skills, TOKYO KEIKI will continue to contribute to the realization of an ideal society.

Ishizue - Foundation

“Ishizue” indicates the groundwork supporting the bottom of buildings or other things. This also applies to the social infrastructure supporting our daily lives and businesses. TOKYO KEIKI constantly pushes for technical innovation to become the foundation supporting the ideal society of the future.

TOKYO KEIKI Integrated Technologies

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler/Lowering</td>
<td></td>
</tr>
<tr>
<td>Windmills</td>
<td></td>
</tr>
<tr>
<td>Yards</td>
<td></td>
</tr>
<tr>
<td>Rail Controls</td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>& Telecomm.</td>
<td></td>
</tr>
<tr>
<td>Printing</td>
<td></td>
</tr>
<tr>
<td>Mailing</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Railways</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>Ship & Aircraft</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td></td>
</tr>
<tr>
<td>Ship</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Logistics</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Logistics</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
</tbody>
</table>
Marine Systems

Marine systems require advanced navigational and communication capabilities in order to achieve the maximum level of safety and efficiency. The merging of navigation and communications technologies is spurring the development of a whole new generation of marine transportation and physical distribution systems. Increasingly, commercial vessels are computerized and linked electronically with land and sea bases. Invaluable information about shipping route conditions, weather and land transportation can be readily available to ensure safe and timely delivery of goods around the globe. A leader in this field, TOKYO KEIKI manufactures and markets a wide range of navigational equipment, integrated bridge systems and communications equipment for ocean going vessels.

Utilizing Advanced Navigation and Communications Technologies to Ensure Safer Voyages

1. Integrated Bridge System
A variety of integrated navigational systems and auxiliary equipment makes it possible for ship navigators to monitor bridge functions and allows them to navigate busy urban waterways efficiently and safely.

2. Gyrocompasses
The gyrocompass produces highly accurate heading reference data that is indispensable for determining the course of a vessel. An autopilot maintains a set course based on this information.

3. Autopilots
The autopilot automatically steers the vessel along a predetermined course and is capable of compensating for wave and tidal action.

4. Electronics Chart Display Systems
This computerized system is capable of displaying charts and related data on a screen to assist the crew in confirming a course and to support manual charting. It can also share functions with an autopilot and overlay radar images over electronic charts.

5. Marine Radars
Marine radar is the eye of a marine vessel and is indispensable in determining position, detecting and avoiding other vessels, and preventing collisions. The radar system's display screen warns of vessels in the neighborhood, shorelines, beacons and other physical structures.

Communications equipment and systems

6. Automatic Identification System for Vessels (AIS)
This radio system continually transmits a vessel's data (name, dimensions, type, position, course and speed) and automatically receives similar data from other vessels. The system enhances safety and efficiency and aids in marine traffic control and land support communications.

7. Voyage Data Recorder (VDR)
This system accumulates data on vessel position, movement, control, and other important information together with voice data and radar screen information in a recording unit, much like the "black box" units on aircraft, in order to help investigators ascertain the cause of marine accidents.

8. INMARSAT-FB
This system facilitates land-to-ship communications by means of satellites. The INMARSAT-FB (Fleet BroadBand) is a new communications system capable of continuous connections between land and a vessel for web monitoring and Internet mails. This system is being expanded to accommodate strategic utilization of navigational and vessel control data.

9. GMDSS Radio Communications Equipment
This radio communications unit conforms to the internationally recognized Global Maritime Distress and Safety System and is used for emergency relief assistance in marine accidents.

Wataru - Navigation
This character means “crossing the sea”. Navigating large-volume transportation of a global scale, the maritime transportation industry needs to be highly secure and reliable at all times. Supporting this is another important mission of TOKYO KEIKI.
Hydraulic Control Systems

Hydraulic control systems are an invisible yet essential part of the foundation that supports modern society. They provide important functions in the drive and control systems of various types of machinery, such as injection molding machines, machining tools, construction equipment, dam gates and amusement park machinery. In our quest to provide our customers with products that offer the greatest potential for excellent controllability under high pressure, large displacement and low noise conditions, we are also addressing environmental issues important to society. Fluid power is being used in a variety of new power control products such as hydraulically controlled electric drive servo systems and hybrid systems incorporating pneumatic controls.

A New Generation of Power Controls

1. Proportional Electromagnetic Control Valves
 TOKYO KEIKI's proportional valves provide the high level of precision control required in industrial machinery. They offer responsive proportional control with superior repeatability.

2. COMNICA Valves
 The new COMNICA valves with onboard microprocessors are solenoid directional valves with flow control capabilities. These valves eliminate the need for intricate control circuits, while providing a high degree of speed and positioning control.

3. Cartridge Servo Valves
 This cartridge servos valve provides control of large flows with high response and low rate of pressure loss in a compact configuration. It is optimum for large flow, high-speed injection control applications, which are beyond the capability of electric systems.

4. Compact Power Packages
 Our hydraulic power packages offer practical, space-saving solutions for machine tools and industrial machinery. Their compact design enhances the size, weight and performance efficiency of machine tools.

5. Direct Drive Pump Control Systems
 This hybrid hydraulic-drive power source system incorporates a variable displacement piston pump, which is controlled by an AC servo motor. The merits of hydraulic-electric drive are utilized to their fullest potential in this energy-saving, high performance system.

6. High Torque Low Speed Hydraulic Motors
 Compact MHT series vane motors come with many options and provide stable performance in the low speed range which is superior to other types of motors such as radial piston motors.

7. Low Noise High Pressure Variable Displacement Piston Pumps
 Low noise, superior controllability, and long life PH series piston pumps offer rated pressures of 28MPa and maximum speed of 1800 rpm (PH70 pressure rating, 21MPa).

8. Low Noise Fixed Displacement Vane Pumps
 Single, double, triple SQP (SQPS) series vane pumps are used in many industrial applications such as plastic molding machines and machine tools and feature excellent durability.

9. Industrial Radio Control Systems
 TOKYO KEIKI's technical expertise in hydraulic control has been utilized in the development of radio control systems for hydraulically powered construction equipment and special purpose vehicles. These systems enable the control of such machinery operating in hazardous environments from safe remote locations.
Fluid Controls

Water, wastewater and agricultural water systems are important components of the social infrastructure that supports modern life. Effective management of flows and levels of this precious resource, including fast response during emergencies caused by natural disasters, is critical. Fluid management also plays an important behind-the-scenes role in process control of energy resources insuring the safety and security of petroleum and LNG storage facilities and liquid chemicals tanks. TOKYO KEIKI's fluid control equipment and systems play a key role in these infrastructures.

Soku - Measure

Measuring technology is the very foundation for civilization and industry. Among this, measuring and controlling large quantities of flowing resources and substances like water, petroleum or fluid chemicals substances requires original technologies. TOKYO KEIKI's technologies are used to utilize valuable resources in an effective and adequate way.

Supporting the Effective Utilization of Fluid Resources with Highly Advanced Measuring Techniques

1. **Ultrasonic Flow Meters/Portable Ultrasonic Flow Meters**
 TOKYO KEIKI's ultrasonic flow meters incorporate ultrasonic sensors that can be easily mounted on the outside of existing pipes to provide accurate measurement of flow volumes. Our flow measurement devices have an enviable history of installations in the centralized monitoring systems that govern the flow of water treatment and water distribution networks. Our portable type ultrasonic flow meter is widely used in preventative maintenance work involving the monitoring of flow through pipes.

2. **Microwave Level Meters**
 These microwave level meters provide precise measurement of levels even under severe operating environments including crude oil, LNG, molten metal and chemical liquid storage tanks. We have a full lineup of products for process control suitable for a wide range of applications from petroleum stockpile bases and chemical plants to streams and dams.

Imagens ilustrativas de medidores de nível de ondas de micro-ondas e medidores de fluxo ultrasônicos.
Information and Telecommunications

Communications technology has changed our world. Cellular phones have made talking with others far away instantaneous and car navigation systems are enhancing driving comfort and even saving lives. Ground digital telecasting services and many other innovations are transforming the way we live. Microwave technology has been central to the development of mobile communications equipment and our expertise in this area has put TOKYO KEIKI at the forefront of development of microwave IC and microwave devices such as VCO and SAW filters. We are also developing Gyro Stabilized Camera Systems and antenna directing systems used in advanced interactive television equipment.

Broadening our Scope of Contribution to Society—from Mobile Communications Technology to Sophisticated Security Systems

Data communications

1. Microwave Devices
TOKYO KEIKI offers a comprehensive line of 2-way and 4-way dividers and combiners, directional couplers, antennas and other microwave devices. This line includes wide band, low noise, low power consumption and highly stable amplifiers and VCOs with frequency wavelengths ranging from 200MHz to 18GHz.

2. Microwave Modules
TOKYO KEIKI supplies microwave modules and subassemblies customized to meet user requirements for advanced digitalization, higher frequency, and denser circuit-mounting applications. We supply a large number of transceiving modules for WiMAX stations, LAN modules, high-power lowdistortion amplifier modules and others.

3. Premises Entry-Exit Control Systems
Contactless IC Card Reader-Writers
To safeguard corporate information, companies are sharply focused on controlled entry into and exit from their office premises, production facilities and research laboratories. TOKYO KEIKI markets various types of security systems, such as its “EXENON” Entry/Exit Control System, for electronic locks and gates, and the “Contact-less IC Card Reader-Writer” to configure maximum security card systems. (RF-ID system products are handled by Central Division II)

Communications control

4. Antenna Directing Systems
The frequent changes in the attitude of a helicopter in engaged in live broadcasting causes misalignment of helicopter relay antennas to the mobile-station and/or base-station antennas, and destabilizes the circuit. TOKYO KEIKI’s antenna directing system integrates microwave technology and inertial sensor technology to maintain relay antenna alignment with the receiving station. The system, installed in helicopters operated by TV broadcasting stations, is an indispensable communications link.

5. Direction-Finding Receiving Systems
Crucial in reporting emergencies via helicopter is quick acquisition of a circuit with the ground staff. TOKYO KEIKI’s direction-finding receiving system fulfills this requirement. The system quickly acquires the video electric waves transmitted from a remote location by the ground staff and displays the direction of arrival on a monitor to ensure timely reporting of fastbreaking news and colorful and sharp images.

6. Gyro Stabilized Camera Systems
Gyro stabilized camera systems incorporate an automatic compensation system that allows for changing attitudes and the vibration of the helicopter. Incorporating an accurate tracing function for images, these cameras are capable of shooting and relaying video footage unimpeded, when combined with an antenna directing system and a direction-finding receiver.

7. Mobile Satellite Communications Antenna Stabilizer
This stabilizer controls the relay antenna of telecasting vehicles with extremely high precision so that the vehicles may transmit radio waves accurately via communications satellite, while in motion. Despite unfavorable conditions of transmission from moving vehicles, relay waves are accurately transmitted to a synchronous satellite orbiting at 36,000 km.
Printing Inspecting Equipment

Accuracy and precision in labeling is indispensable today in such diverse fields as bar code printing and the labeling of medications. Understandably, should mistakes occur in either of these areas, the results could be catastrophic. TOKYO KEIKI’s highly advanced pattern matching image-processing technique has dramatically improved accuracy in the printing process.

An Electronic Eye Maintains the High Resolution of Printing Media.

This technology incorporates an advanced image-processing technique known as pattern matching in order to detect irregularities in printing and impurities in printing batches. The process detects problems by comparing data previously stored with current information collected by a CCD camera attached to the printing system. This new equipment is also used in quality control programs for the reproduction of film, non-woven fabrics, aluminum foil and other materials.

Example of flaw detected

Example of flaw history screen

Shi - Observation

Today, quality is being regarded as very important. The quality of printed articles, etc., has a significant influence on the credibility of information. TOKYO KEIKI’s “Electronic Eyes” are watching today to maintain the quality of print media. Protecting quality is another important role we have.
1. Ultrasonic Rail Inspection Car
The inspection car detects flaws and wear that occurs within the rail interior. Ultrasonic pulses are propagated into the rail and return echoes are examined to determine the existence of and type of defects. Laser beams and processing of CCD camera-generated images are also employed to determine cross-sectional rail wear problems that impact riding comfort and noise.

2. “Data Depot” System
Our “Data Depot” system is a unique, contact-less system which enables the transfer of information from data stored on discs fixed on cross ties to a vehicle-mounted antenna unit. Among its capabilities, the system provides accurate measurement of distances from starting points.

3. Ultrasonic Rail Flaw Detector
This pushcart-type rail flaw detector enables detailed inspection of rail sections based on data collected by the ultrasonic rail inspection car. Four-color, cross-sectional images are monitored in real-time and flaw data is recorded on a video recorder.

4. Portable Ultrasonic Rail Flaw Imager
This versatile imaging-type ultrasonic flaw detector is also used for checking for flaws in rails. This handy device allows the user to select A-scan, waveform, or B-scan, cross-sectional image, and displays.

5. Expansion Gap Gauge
A fixed gap, or rail play, between rails functions to compensate for thermal elongation and contraction of the rails. Conventional means of rail play inspection involved manual insertion of a gauge into each gap, a very labor-intensive task. TOKYO KEIKI RAIL TECHNO expansion gap gauge automatically measures and records these gaps, while the unit is pulled along the track by a special motorcar, greatly streamlining this task.

6. Switch Profile Gauge
Railway switches, generally referred to as “points”, guide trains along specified rails. Maintenance of complicated point switches once required advanced know-how and expertise, a process which has been automated with TOKYO KEIKI RAIL TECHNO’s switch profile gauge. When the unit is pushed into position, the device automatically measures the degree of wear and displacement of rails and crossing devices at switching points. Measured results are output in tabular and graphical form and as image displays of the worn rails.

7. Inspection and Testing Services
In addition to development and manufacture of railway maintenance equipment, TOKYO KEIKI RAIL TECHNO also provides measurement, survey, testing and maintenance inspection services on a contract basis.

8. Platform Clearance Gauge
The Platform Clearance Gauge employs laser technology to capture images of the platform and with an inclinometer which compensates for tilt in the plane of the railway track, measures the distance between the platform and railcar and platform elevation. Vital information on clearances between the train and platform and level differences between the car doors and platform provided by this product greatly aids in railway maintenance and supervision, enhancing comfort and safety.

Ki - Railway
The character “キ” originally indicates the track of a carriage. Today, it stands for “railway”, which plays a key part in high-speed transportation and travel. Railway transportation is important as it supports our daily lives. And TOKYO KEIKI is protecting the tracks that provide its base.
Automating Construction Work

As a supplier of automated construction equipment to civil and related engineering companies, TOKYO KEIKI CONSTRUCTION SYSTEMS is contributing to increases in quality and productivity on construction sites around the world. The Company's "Hi-Grade" system which rationalizes roadbed construction and asphalt-paving, as well as our tunnel excavation attitude-sensing systems for shield machines operating in subway construction sites have earned high marks from users in these industries.

1. "Hi-Grade" System
The "Hi-Grade" system for bulldozers and asphalt finishers utilizes laser beam and ultrasonic distance measurement references to automatically control bulldozer blades and finisher screeds to keep the machines on grade. This system is contributing greatly to labor savings, high quality finish work, a significant reduction in project time and safety.

2. Road Surface Cross-Sectional Profile-Measuring Equipment
This innovative device, developed by combining laser measurement, inertial sensor and software technologies, computes cross-sectional profile (undulation) and inclination of road surfaces in an instant.

3. Road Surface Longitudinal Section Flatness-measuring Equipment
This equipment measures flatness along road surfaces by use of laser beams. It can cope with sharp curves and significant inclinations, as well as with specially paved surfaces such as for drainage.

4. Attitude-Sensing Systems for Tunnel Excavation
If the direction and drift from the plan line is known, a tunnel excavation machine can be prevented from straying off course. The TOKYO KEIKI attitude-sensing system detects azimuth, pitch, roll, and height of the tunnel excavation machine in real time which enables precise control of machine movement. The system has been adopted for many tunneling projects, both in Japan and overseas.

5. Integrated Position and Attitude-Measuring Systems for Tunnel Excavation
Our proprietary software provides complex, error-free, and instantaneous calculations. The graphic display simplifies operation of the shield tunneling machine. Software for pipe jacking systems is also available.

Ken - Construction
Construction technologies have evolved. Construction works used to be operated manually. TOKYO KEIKI realized a system to automatize construction machinery. And this increases the efficiency and safety at construction sites for roads, subways and other infrastructures.
Disaster Prevention

Since its involvement as the first company in Japan with extinguishing systems utilizing inert (carbon dioxide) gas, TOKYO KEIKI has been active in the development of gas fire extinguishing systems. Our fire extinguishing systems are used in office buildings, museums, multi-story parking structures, printing plants and other important facilities.

Mamoru - Protect

The top part of the character “mamoru” is called “ukanmuri” and stands for the roof of a building. Buildings protect people’s lives and assets. Protecting these buildings from disaster is one of TOKYO KEIKI’s missions. We develop and deliver unmanned fire control equipment and other equipment to prevent disaster.

Protecting Precious Life and Assets from Fire

Gas-based Fire Extinguishers

Gas-based fire extinguishers are used in a wide range of settings, from large open spaces such as parking garages, to equipments such as printing machines. TOKYO KEIKI produces systems compatible with gas-type fire extinguishing agents, such as a carbon dioxide gas type, which is suitable for unmanned and local areas, a nitrogen gas type that allows hydrogen concentrations safe for firefighters, and a halon 1301 gas type, which prevents suffocation, owing to the negligible release of halon gas during use.

Kan - Sense

The word “kan” used to stand for the original human senses. Today, inertial sensor technology is giving machines the power of sensing. Sensing earthquakes, sensing changes in speed and sensing human movements… These sensing technologies are developed by TOKYO KEIKI.

Inertial Sensor

Applying inertial sensor technology, TOKYO KEIKI manufactures an accelerometer that is the core of a high-precision seismic meter and a motion sensor for virtual reality systems. We are also developing a wearable micro-inertial sensor which will be put to practical use in the near future in a wide range of new applications.

Accelerating Optimized Control through Sensing Technologies

1. **Position and Attitude Sensor (VSAS)**
 - This compact sensor consists of gyroscopes, accelerometers, GPS module, magnetic compass sensor and Navigation circuit. Output signals are angular velocity, acceleration (X-axis, Y-axis, Z-axis), attitude angles (roll, pitch and yaw), position and magnetic bearing. The sensor can be used to measure the movements of cars, vessels, airplanes, helicopters and others.

2. **Servo Accelerometer**
 - This high-precision servo accelerometer is being adopted in a wide range of fields. For example, it is being used in conjunction with a system for seismic data retrieval, which notifies scientists of impending earthquakes based on subtle vibrations recorded from deep within the earth.

3. **Micro-inertial Sensor (MESAG)**
 - The Micro Electrostatically Suspended Accelerometers and Gyros (MESAG) sensor, under development by TOKYO KEIKI, is a rotary-type multi-output micro-inertial sensor based on advanced micro-machining technology. The technology is being used to develop a wearable micro-device that is expected to revolutionize miniaturized products for consumers.
Defense

Instantly detecting a danger frequency from among multiple scrambled microwave signals and alerting the pilot of fighter aircraft (TOKYO KEIKI’s radar warning equipment) and safely guiding submerged submarines in a target area (TOKYO KEIKI inertial navigation equipment) require the most reliable of advanced technologies. TOKYO KEIKI is directing such cutting-edge defense technology toward the commercial sector in our ongoing efforts to meet the challenges of tomorrow.

Meeting Advanced Needs with Advanced Technologies

1. Radar Warning Receiver
The radar warning equipment of fighter aircraft detects radar signals reflected from an opposing fighter or other aircraft and alerts the pilot via a display that shows the opposing aircraft's direction, distance, type, and other information. Developed by TOKYO KEIKI, the system’s reliability is time-proven. TOKYO KEIKI’s microwave technology is also applied to meet diverse needs in the field of data communications.

2. Inertial Navigation Systems
Submarine missions that call for extended submerged cruising are not unusual. In the world beneath the waves, the inertial navigation system is indispensable, because the vessel’s bearing and position checks cannot be performed using astronomical observations, land observations, GPS, and surface-vehicle tools. TOKYO KEIKI’s inertial navigation systems consist primarily of a precision ring-laser gyrocompass and accelerometer, and feature advanced inertial-navigation processing that measures vessel position and speed to an extremely high level of accuracy.

3. Attitude and Heading Reference System
TOKYO KEIKI’s attitude and heading reference system for small observation helicopters is a hi-tech system featuring the newest fiber optics gyro. The system measures bearing, position, attitude, and other navigation data relative to the fuselage in order to provide a high degree of safety.

Maritime Traffic

Conditions like those of the Tokyo Bay or the Seto Inland Sea, where a large number of vessels sailing in narrow channel, require maritime traffic control and aids to navigation activities to prevent sea accidents in advance. To ensure that this kind of vessel traffic is safe and efficient, our maritime traffic systems play an important role. Contributing to the safety of maritime traffic routes, TOKYO KEIKI delivers, for example, VTS (Vessel Traffic Service) equipment and AIS (Automatic Identification Systems) Base station.

Advanced support systems protecting the safety of maritime traffic

1. High-Resolution Radar Systems
To control maritime traffic, the movements and positions of the vessels traveling a sea area must be accurately captured. Our high-resolution radar equipment reliably catches the vessels that congested sea-lane and displays their data on high-definition screens. This equipment is “the other eye” of the maritime traffic control officers.

2. Maritime Traffic Information Processing Systems
These systems centrally manage information on the courses and positions of vessels as obtained from the high-resolution radar equipment and the onboard AIS station equipment, and provide an integrated display of that information. We support the smooth operation of traffic control services and traffic assistance services. Traffic control services remind vessels to correct their course or give instructions to avoid hazards at times of low visibility, while traffic assistance services provide information on courses and estimated times of entry into waterway for huge vessels, the situation of operating fishing vessels, weather warnings, and others.

3. AIS Base Station Systems
This equipment receives various types of information (name and type of vessel, position, course, speed, etc.) transmitted by the onboard AIS equipment of the vessels, and provides the information to the controllers. Thanks to this equipment, controllers can give more accurate instructions to each individual vessel, contributing to safe navigation by transmitting current weather conditions, position correction data based on differential GPS and other information.

Wan - Bay

“Wan” stands for landlocked inland seas. And these are of course “crossroads” for maritime traffic where many vessels are crossing each other’s way. TOKYO KEIKI’s support systems are working to secure safe vessel operation in these crowded waterways.
Corporate Data

Company Outline (as of April 1, 2010)

- **Brief History**
 - 1896: Established in Koishikawa, Tokyo as Japan’s first manufacturer of pressure gages and other measuring devices
 - 1901: Began manufacturing compasses, depth sounders and other navigation instruments and equipment
 - 1918: Began manufacturing Sperry gyrocompasses
 - 1923: Began development of aero- nautical instruments
 - 1930: Head Office moved to Kamata, Tokyo
 - 1952: Developed Japan’s first marine radar system
 - 1954: Began manufacturing hydraulic equipment
 - 1963: Developed world’s first commercial ultrasonic flow meter
 - 1971: Developed radar warning system used in the F-4EJ fighter plane
 - 1974: Established TOKIMEC RAIL TECHNO INC. (Formerly TOKIMEC CONSTRUCTION SYSTEMS INC.)
 - 1980: Celebrated 100th anniversary in operation
 - 1984: Began manufacturing Sperry gyrocompasses
 - 1988: Constructed new head office building and R&D center
 - 1990: Changed corporate name from Tokyo Keiki to TOKIMEC INC.
 - 1992: Established Busan Liason Office
 - 1997: Constructed new head office building and R&D center
 - 1999: Established TOKIMEC KOREA HYDRAULICS CO., LTD., in Korea
 - 2000: Established Maritime Traffic Dep. in Electronics Systems Division
 - 2006: Established Busan Liason Office
 - 2007: Established Busan Liason Office
 - 2008: Restored TOKYOKJEIKI corporate name.

- **R&D Center, Factories and Plants**
 - **Research & Development Center**
 - 2-16-46 Minami-Kamata, Ohta-ku, Tokyo 144-8511
 - **Nasu Factory**
 - 1-1 Takakukou, Nasu-machi, Nasu-gun, Tochigi 325-0001
 - **Yaita Factory**
 - 333-4 Azuma-cho, Yaita, Tochigi 329-2136
 - **Sano Factory**
 - 1-5 Sakae-chan-Sano, Tochigi 327-0816
 - **Tanuma Plant**
 - 2-8-11 Chuo, Ueda, Nagano 386-0012
 - **Nagano Sales Office**
 - 15-10 Wakaba-cho, Numazu, Shizuoka 410-0059

- **Sales Offices and Service Centers**
 - **Sapporo Sales Office**
 - 4-12-12 Ryouji-cho, Saza, Sapporo 060-0862
 - **Sendai Sales Office**
 - 2-2-12 Kikusui Niji-cho, Sendai, Miyagi 983-0852
 - **Sapporo Sales Office**
 - 4-12-12 Ryouji-cho, Saza, Sapporo 060-0862
 - **Sendai Sales Office**
 - 2-2-12 Kikusui Niji-cho, Sendai, Miyagi 983-0852

- **TOKYO KEIKI Domestic Network**

Osaka Sales Office
- 1-7-26 Nishinomiya-cho, Yodogawa-ku, Osaka 552-8004
 - Tel: 81-6-6100-8001 Fax: 81-6-6100-8010

Kobe Sales Office
- 3-14-13 Mikatahara, Higashinada-ku, Kobe, Hyogo 652-0802
 - Tel: 81-6-240-1010 Fax: 81-6-240-1090

Hiroshima Sales Office
- 3-19 Komachi, Naka-ku, Hiroshima 730-0041
 - Tel: 81-82-240-4601 Fax: 81-82-241-7199

Yamaguchi Sales Office
- 2-10-1 Osato-Shiroyama, Yamaguchi 754-0082
 - Tel: 81-83-973-6890 Fax: 81-83-973-6877

Imabari Sales Office
- 4-3-7 Takahara-cho, Imabari, Ehime 774-0015
 - Tel: 81-88-29-2300 Fax: 81-88-29-2301

Kitakyushu Sales Office
- 2-7-8 Koyama-cho, Kokurakita-ku, Kitakyushu, Fukuoka 802-0002
 - Tel: 81-93-531-8801 Fax: 81-93-531-2375

Nagasaki Sales Office
- 5-46 Goto-machi, Nagasaki 850-0036
 - Tel: 81-95-823-6296 Fax: 81-95-826-9498

East Japan Service Center
- 2-16-46 Minami-Kamata, Ohta-ku, Tokyo 144-8511
 - Tel: 81-3-3739-0051 Fax: 81-3-3739-0061

West Japan Service Center
- 1-7-12 Mikatahara, Higashinada-ku, Kobe, Hyogo 652-0802
 - Tel: 81-6-240-1010 Fax: 81-6-240-1090
TOKYO KEIKI Group and Global Network

TOKYO KEIKI GROUP

TOKYO KEIKI AVIATION INC.
Installation and maintenance of avionics equipment
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI CUSTOMER SERVICE INC.
Sales of TOKYO KEIKI product parts
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI POWER SYSTEMS INC.
Production and sales of large and mid-size hydraulics, resource recycling systems, equipment, sales of hydraulic equipment
168 Tada-cho, Sano, Tochigi 327-0311
Tel: 81-283-62-7330 Fax: 81-283-62-7305

TOKYO KEIKI INFORMATION SYSTEMS INC.
Design and development of software and systems. Calculating, leasing and factoring businesses
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI TECHNOPORT INC.
Packing services and shipping insurance, and hotel businesses
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI CONSTRUCTION SYSTEMS INC.
Production and sales of machines for road and building construction
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI RAIL TECHNO INC.
Measurement, inspection and data analysis service for railroad track maintenance
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI TECHNOPORT INC.
Packing services and shipping insurance, and hotel businesses
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI INFORMATION SYSTEMS INC.
Design and development of software and systems. Calculating, leasing and factoring businesses
2-16-46 Minami-Kamata, Ota-ku, Tokyo 144-8551
Tel: 81-3-3731-0551 Fax: 81-3-3731-0582

TOKYO KEIKI U.S.A., INC.
Import-export of electronic components, and optical and electronic products
445 South Figueroa St., Suite 3770, Los Angeles, CA 90071, U.S.A.
Tel: 1-213-689-4747 Fax: 1-213-689-0303

TOKIMEC KOREA POWER CONTROL CO., LTD.
Production and sales of hydraulic equipment and engineering of hydraulic/pneumatic systems
803 Wooree venture town 2, 82-29, Mullae-Dong, 3ga, Yeongdeungpo-Gu, Seoul 150-093, Korea
Tel: 82-2-471-8301 Fax: 82-2-471-8303

MOCOS JAPAN CO., LTD.
Business related to settlements of marine telecommunications charges and sales of radio communication equipment.
Yamato Bldg, 3-8, Kiyosumishirakawa-ko, Tokyo 135-0002

Overseas Office
Shanghai Representative Office
C-1605, Orient International Plaza, No. 85 Lou Shan Guan Road, Shanghai 200336, China
Tel: 86-21-3223-1252 Fax: 86-21-6278-7667

Busan Liaison Office
Shindonga Bldg, Room 1003, 426-7 Bujeon-dong, Busanjin-gu, Busan 614-783, Korea
Tel: 82-51-802-2190 Fax: 82-51-802-2188

Global Partnerships
Eaton Corporation (U.S.A.)
Avionics devices
Honeywell International Inc. (U.S.A.)
Avionics devices
Rosemount Tank Radar AB (Sweden)
Marine and Fluid Measuring equipment
List of Major Products

<table>
<thead>
<tr>
<th>Control Division I</th>
<th>Control Division II</th>
<th>Electronics Systems Division</th>
<th>TOKYO KEIKI Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine systems</td>
<td>Hydraulic equipment and systems</td>
<td>Defense systems</td>
<td>TOKYO KEIKI AVIATION INC.</td>
</tr>
<tr>
<td>Integrated Bridge Systems</td>
<td>Pumps</td>
<td>Avionic systems and equipment</td>
<td>Electronics parts for installation in aircraft</td>
</tr>
<tr>
<td>Gyrocompass/magnetic compasses</td>
<td>Motors</td>
<td>Radar warning receivers</td>
<td>Noise-resistant wireless intercoms</td>
</tr>
<tr>
<td>Autopilots</td>
<td>Pressure control valves</td>
<td>Tracking systems</td>
<td>EMC protection equipment</td>
</tr>
<tr>
<td>Marine radars</td>
<td>Flow control valves</td>
<td>Integrated display systems</td>
<td>TOKYO KEIKI POWER SYSTEMS INC.</td>
</tr>
<tr>
<td>Electronics chart display systems</td>
<td>Directional control valves</td>
<td>Radar displays</td>
<td>Hydraulic and applied systems</td>
</tr>
<tr>
<td>Navigation information display and information systems</td>
<td>Stack valves</td>
<td>Gyro-magnetic compasses</td>
<td>Environment equipment</td>
</tr>
<tr>
<td>Engine monitors</td>
<td>Cartridge valves</td>
<td>Attitude heading reference systems</td>
<td>TOKYO KEIKI CONSTRUCTION SYSTEMS INC.</td>
</tr>
<tr>
<td>Chart plotters</td>
<td>Proportional control valves</td>
<td>Air data computers</td>
<td>Road construction equipment and systems</td>
</tr>
<tr>
<td>Doppler speed log</td>
<td>Servo valves</td>
<td>Accelerometers</td>
<td>Road surface cross-sectional profile-measuring equipment</td>
</tr>
<tr>
<td>Tracking pilot systems/joystick controllers</td>
<td>Digital valve control systems</td>
<td>Missile targeting systems</td>
<td>Road surface longitudinal section profile-measuring equipment</td>
</tr>
<tr>
<td>GMDSS Radio communication equipment</td>
<td>Electronic pressure switches and sensors</td>
<td>Hydraulic equipment</td>
<td>Buildbocker blade auto-control system</td>
</tr>
<tr>
<td>INMARISAT</td>
<td>Cylinders</td>
<td>Radar systems</td>
<td>Motor grade blade control system</td>
</tr>
<tr>
<td>Automatic identification system (AIS)</td>
<td>Compact power packages</td>
<td>Radar indicators</td>
<td>Asphalt finisher control system</td>
</tr>
<tr>
<td>Voyage data recorders (VDR)</td>
<td>Other control systems and units</td>
<td>Dead reducing equipment</td>
<td>Asphalt mixture supply sensing system</td>
</tr>
<tr>
<td>Berthing support systems</td>
<td>Accessories</td>
<td>Electronic chart display and information systems</td>
<td>Peridorm fan pipe oil-sealing measuring equipment</td>
</tr>
<tr>
<td>Electro-hydraulic steering systems</td>
<td>Direct drive pump control systems</td>
<td>Helicopter landing indicators</td>
<td>Building construction equipment</td>
</tr>
<tr>
<td>Hydraulic systems for vessels</td>
<td>Construction equipment and vehicles systems</td>
<td>Ground equipment</td>
<td>Floor level-measuring equipment</td>
</tr>
<tr>
<td>Steering rudders</td>
<td>Radio remote control systems</td>
<td>Target sight subsystems</td>
<td>Tunnel construction equipment and systems</td>
</tr>
<tr>
<td>Fis stabilizers</td>
<td>Rotary brushes</td>
<td>Slope angle detection systems</td>
<td>Attitude-sensing systems for tunnel excavators</td>
</tr>
<tr>
<td>Fire detectors</td>
<td>Stroke sensors</td>
<td>Direction-finding systems</td>
<td>Integrated position and attitude-measuring systems for tunnel excavators</td>
</tr>
<tr>
<td>Ultrasonic flow meters</td>
<td>Construction equipment controllers</td>
<td>Position-determining systems</td>
<td>Level-sensing equipment for tunnel excavators</td>
</tr>
<tr>
<td>Microwaves level meters</td>
<td>Aerial work platform moment limiters</td>
<td>Ground equipment</td>
<td>Sensors and related systems</td>
</tr>
<tr>
<td>Ultrasonic level meters</td>
<td>Work vehicle controllers</td>
<td>Target sight subsystems</td>
<td>Accelerometer/inertial laboratory gyros</td>
</tr>
<tr>
<td>Fire-extinguishing facilities</td>
<td>Printing inspection equipment and systems</td>
<td>Slope angle detection systems</td>
<td>Magnetic azimuth systems</td>
</tr>
<tr>
<td>Halon 1301 fire-extinguishing facilities</td>
<td>Printing and foreign matter inspection equipment</td>
<td>Direction-finding systems</td>
<td>Sensor inclinometers (single/double units)</td>
</tr>
<tr>
<td>Carbon dioxide fire-extinguishing facilities</td>
<td>Film inspection systems</td>
<td>Laser warning systems</td>
<td>Three-dimensional rate measuring sensors</td>
</tr>
<tr>
<td>Nitrogen fire-extinguishing facilities</td>
<td>RF-ID systems</td>
<td>Position-determining systems</td>
<td>Inertial measuring instruments</td>
</tr>
<tr>
<td>Flow Meters and related systems/equipment</td>
<td>Data-card application systems</td>
<td>Hydraulic equipment</td>
<td>TOKYO KEIKI RAIL TECHNO INC.</td>
</tr>
<tr>
<td>Ultrasonic flow meters</td>
<td>Contactless IC card systems</td>
<td>Other products</td>
<td>Ultrasonic rail inspection car</td>
</tr>
<tr>
<td>Ultrasonic open-channel flow meters</td>
<td>Access control systems</td>
<td>Automatic testing equipment</td>
<td>Ultrasonic rail flaw detector</td>
</tr>
<tr>
<td>Ultrasonic flame flow meters</td>
<td>Dynamically recognizable processor and systems</td>
<td>Information and communications</td>
<td>Portable ultrasonic rail flaw imager</td>
</tr>
<tr>
<td>Ultrasonic gas flow meters</td>
<td>Dynamically recognizable processor</td>
<td>Microwave devices</td>
<td>Switch profile gauge</td>
</tr>
<tr>
<td>Microwave level meters</td>
<td>Integrated development environment</td>
<td>RF modules</td>
<td>Expansion gap gauge</td>
</tr>
<tr>
<td>Ultrasonic level meters</td>
<td>Evaluation Kit</td>
<td>Antennas</td>
<td>“Data Depot” system</td>
</tr>
<tr>
<td>Defense systems</td>
<td>In-circuit emulator</td>
<td>Amplifiers</td>
<td>Motion logger for railway train</td>
</tr>
<tr>
<td>Avionic systems and equipment</td>
<td>Communications control systems</td>
<td>Linear-drive amplifiers</td>
<td></td>
</tr>
<tr>
<td>Radar warning receivers</td>
<td>Antenna positioning control systems</td>
<td>VCDs</td>
<td></td>
</tr>
<tr>
<td>Tracking systems</td>
<td>Antenna directing systems</td>
<td>Filters</td>
<td></td>
</tr>
<tr>
<td>Integrated display systems</td>
<td>Direction-finding receiver</td>
<td>Data Processing</td>
<td></td>
</tr>
<tr>
<td>Radar displays</td>
<td>Gyro stabilized camera system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro-magnetic compasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude heading reference systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air data computers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missile targeting systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map signal generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval systems and equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyrocompasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial navigation systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead reducing equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic chart display and information systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter landing indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction equipment and vehicles systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio remote control systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary brushes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction equipment controllers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial work platform moment limiters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work vehicle controllers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing inspection equipment and systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing and foreign matter inspection equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film inspection systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-ID systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-card application systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contactless IC card systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access control systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamically recognizable processor and systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamically recognizable processor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated development environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-circuit emulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information and communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF modules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antennas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear-drive amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications control systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna positioning control systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna directing systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction-finding receivers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyro stabilized camera system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime traffic systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIS Base Station Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime Traffic Information Processing Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine VHF Radio systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine VHF Radio systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25 26